
 

The String Grid Control 
 

Overview of Grids 
A grid is a technique of using columns and rows to represent data in a visual format. There is no strict rule 
as to what a grid control is used for. It can be used to simply display a series of values by categories. It can 
also be used as a time sheet, which will be the basis of the next exercise. Sometimes it is used as a calendar, 
similar to the MonthCalendar control and as we will see later on. 

 
To organize its content, a grid is made of vertical and horizontal lines. These lines are used as separators. 
They create vertical entities called columns and horizontal sections called rows: 
 

 
 
The intersection of a column and a row is called a cell. The cell is the most important entity and the most 
used aspect of a grid. It holds the actual values of the grid. The cells of a grid can be used to display data or 
they can be used to receive data from the user. This means that data of a grid is entered or stored in cells. 
 
Because the role of a grid is unpredictable, the most top cell of each column can be used to display a label. 
By nature, a column specifies a category of value. Therefore, the label of a column signifies the category of 
values of that column: 
 

 
 
To create a series of values for each category, you use a row of data. A row is also called a record. To make 
a record explicit, the most left row can display a label. The easiest and most basic label consists of a 
number. In this case, rows can be labeled from top to bottom as 1, 2, 3, 4, etc. 
 
In most cases, each cell is in fact an Edit control and its content is an AnsiString. This means that a cell 
can contain a natural number, a floating-point variable, or a string. 
 



String Grid Properties 
To create a grid of data, the Visual Component Library (VCL) provides various controls. One of these 
controls is called StringGrid and is implemented by the TStringGrid class. 

 

To create a grid, you can add a StringGrid button . Therefore, you can click this button and position it 
on a form or another control container: 

 

 
 

Like many other controls, a grid is represented with a 3-D effect that raises its borders. This effect is 
controlled by the BorderStyle property. If you do not want to display borders on the control, set the 
BorderStyle property to bsNone: 

 

 
 

A grid is made of vertical divisions called columns and horizontal divisions called rows. Two of the most 
visual characteristics of a StringGrid control are its number of columns and its number of rows. These two 
values are set using the ColCount and the RowCount properties. The values are integer type and should be 
>= 0. If you set either property to a negative value, it would be set to 1. If you do not want to display 
columns, set the ColCount to 0. In the same way, if you do not want to display rows, set the RowCount 
value to 0. 
 
By default, if a grid contains more columns than its width can show, it would display a vertical scroll bar. 
In the same way, if there are more rows than the control's height can accommodate, it would be equipped 
with a horizontal scroll bar. The ability to display scroll bars is controlled by the ScrollBars property. You 
can use it to display only the vertical scroll bar (ssVertical), only the horizontal scroll bar (ssHorizontal), 
both scroll bars (ssBoth), or no scroll bar (ssNone) at all. 

 
Like most other list-based controls, a grid is used to display data and, in some applications, you may want 
the users to enter or use values of the grid control. To guide the users with the values in the grid, you can 
display explicit text in the fixed columns and fixed rows. The top and left cells are qualified as fixed and, 
by default, they are the most top and the left cells respectively. Besides these ranges of cells, you can add a 
fixed row of cells and a fixed column of rows. 

 
If you want to display only one fixed row, it must be the most top range. This characteristic is controlled by 
the FixedRows property and, by default, is set to 1. If you want to display an additional range of fixed cells 



on top, change the value of FixedRows. In the same way, the number of fixed columns on the left side of 
the object is controlled by the FixedCols property. Setting either of these values to 0 would hide the fixed 
column or row: 
 
  
FixedCols=1; FixedRows=1 FixedCols=0; FixedRows=0 

    
FixedCols=1; FixedRows=0 FixedCols=0; FixedRows=1 

    
FixedCols=2; FixedRows=1 FixedCols=1; FixedRows=2 

 

Cells Properties 
The intersection of a column and a row is called a cell. To distinguish cells that hold indicative values and 
those that hold usable or modifiable values, cells are divided in two categories distinguished by two colors. 
The cells on the top section and those on the left, when displaying a different color than the cells in the 
middle-center section of the control, are called fixed cells. 
 
To guide the user with the values on the grid, the cells on top and those on the left display the same color as 
the form, known in the Control Panel as the Button Color. The cells that display usable and modifiable 
values have a background color known in Control Panel as Window Color. To change the background color 
of cells that display values, use the Color property of the Object Inspector. Here is a grid with the 
clSkyBlue color: 
 



 
 
To change the colors of the fixed columns and rows, change the color value of the FixedColor property. 
Here is a grid with the clNavy FixedColor: 
 

 
 
You can also change these colors programmatically. Here is an example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    TStringGrid *StatRates = new TStringGrid(this); 
    StatRates->Parent = this; 
 
    StatRates->Color = TColor(RGB(255, 230, 204)); 
    StatRates->FixedColor = TColor(RGB(255, 128, 0)); 
} 
//--------------------------------------------------------------------------- 
 
To distinguish cells, they are separated by vertical and horizontal lines known as grid lines. By default, the 
grid lines have a width of 1 integer. To display a wider line, change the value of the GridLineWidth. A 
reasonable value should be less than 10. If you do not want to display grid lines, set the GridLineWidth to 
0. 

 
In order to access all of the cells that are part of a column, you should know the column’s index number. 
The most left column, which is sometimes the fixed column, unless the FixedCols value is set to 0, has an 
index of 0. The second column from left has an index of 1, etc. In the same way, rows are presented by an 
index. The most top row has an index of 0; the second row from top has an index of 1, etc. 

 
By default, all columns have a width of 64 pixels. At design or run time, you can control this by changing 
the value of the DefaultColWidth property. If you want to control the widths of individual columns, at run 
time, call the TStringGrid::ColWidths property and specify the index of the column you need. Here is an 
example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    StringGrid1->Color = TColor(RGB(255, 230, 204)); 
    StringGrid1->FixedColor = TColor(RGB(255, 128, 0)); 
 



    StringGrid1->ColWidths[2]  = 48; 
    StringGrid1->ColWidths[3]  = 22; 
    StringGrid1->ColWidths[4]  = 96; 
} 
//--------------------------------------------------------------------------- 
 

 
 

By default, all rows have a height of 24 pixels. At design or run time, you can control this by changing the 
value of the DefaultRowHeight property. If you want to control the height of individual rows, at run time, 
call the TStringGrid::ColHeights property and specify the index of the row you want access to. Here is an 
example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    StringGrid1->Color = TColor(RGB(255, 230, 204)); 
    StringGrid1->FixedColor = TColor(RGB(255, 128, 0)); 
 
    StringGrid1->ColWidths[2]  = 48; 
    StringGrid1->ColWidths[3]  = 22; 
    StringGrid1->ColWidths[4]  = 96; 
    StringGrid1->RowHeights[1] = 18; 
    StringGrid1->RowHeights[2] = 40; 
    StringGrid1->RowHeights[3] = 12; 
} 
//--------------------------------------------------------------------------- 
 

 
 
The columns of the grid are stored in a collection or array called Cols. By specifying the index of a column, 
you can change the label of the column header. In the same way, the rows are grouped in a collection called 
Rows. This allows you to change the text of a row header based on its index. The cells of a grid are stored 
in a two-dimensional array called Cells. 
 
The TStringGrid class provides Options that allow you to customize the behavior of the StringGrid 
control. For example, if you want to allow the user to move the position of a column, set the goColMoving 
option to true. If you want users to be able to move rows, set the goRowMoving option to true. 



 
In order to display cells with their default control appearance, the DefaultDrawing property must be set to 
true, which is the default. If you want to further customize the appearance of cells, you may have to draw 
them at run time. In this case, you would set the DefaultDrawing value to false. 
 

 Practical Learning: Controlling a StringGrid Properties 
1. Open the Payroll1 application you started previously 

2. Continue designing the form as follows: 

 
 

Label 
Caption: First Week 
Label 
Caption: Second Week 
StringGrid 
Hint: Enter hours worked for each day in the appropriate cell 
ColCount: 7 FixedCols: 0 Height: 78 
Name: grdTimeSheet RowCount: 3 Width: 458 
Options GoEditing: true GoTabs: true        
Panel 
BitBtn 
Glyph C:\Program Files\Common Files\Borland 
Shared\Images\Buttons\calculat.bmp 
Caption: &Process It Default: true Name: btnProcessIt 
StringGrid  
ColCount: 3 Height: 78 Name: grdEarnings 
RowCount: 3  Width: 185  
Label 
Caption: Hourly Salary:  
Edit 
Name: edtHourlySalary Width: 58  
Label  
Caption: Total Earnings: 
Edit  
Name: edtTotalEarnings   Width: 58  
BitBtn 
Kind: bkClose 
 

3. Save All 



4. Double-click an empty area on the form to access its OnCreate() event 

5. To customize the StringGrid's cells, add the following code: 

//--------------------------------------------------------------------------- 
void __fastcall TfrmMain::FormCreate(TObject *Sender) 
{ 
    dteStartPeriod->CalColors->BackColor = TColor(RGB(230, 245, 255)); 
    dteStartPeriod->CalColors->MonthBackColor = TColor(RGB(212, 235, 255)); 
    dteStartPeriod->CalColors->TextColor = clBlue; 
    dteStartPeriod->CalColors->TitleBackColor = TColor(RGB(0, 0, 160)); 
    dteStartPeriod->CalColors->TitleTextColor = clWhite; 
    dteStartPeriod->CalColors->TrailingTextColor = TColor(RGB(190, 125, 255)); 
 
    dteStartPeriod->Format = "ddd d MMM yyyy"; 
 
    dteEndPeriod->CalColors->BackColor = TColor(RGB(255, 236, 218)); 
    dteEndPeriod->CalColors->MonthBackColor = TColor(RGB(255, 235, 214)); 
    dteEndPeriod->CalColors->TextColor = TColor(RGB(102, 52, 0)); 
    dteEndPeriod->CalColors->TitleBackColor = TColor(RGB(176, 88, 0)); 
    dteEndPeriod->CalColors->TitleTextColor = TColor(RGB(255, 238, 220)); 
    dteEndPeriod->CalColors->TrailingTextColor = TColor(RGB(230, 115, 0)); 
 
    dteEndPeriod->Format = "ddd d MMM yyyy"; 
     
    grdTimeSheet->Cells[0][0] = "Monday"; 
    grdTimeSheet->Cells[1][0] = "Tuesday"; 
    grdTimeSheet->Cells[2][0] = "Wednesday"; 
    grdTimeSheet->Cells[3][0] = "Thursday"; 
    grdTimeSheet->Cells[4][0] = "Friday"; 
    grdTimeSheet->Cells[5][0] = "Saturday"; 
    grdTimeSheet->Cells[6][0] = "Sunday"; 
 
    grdTimeSheet->RowHeights[0] = 18; 
 
    grdTimeSheet->Cells[0][1] = "0.00"; 
    grdTimeSheet->Cells[1][1] = "0.00"; 
    grdTimeSheet->Cells[2][1] = "0.00"; 
    grdTimeSheet->Cells[3][1] = "0.00"; 
    grdTimeSheet->Cells[4][1] = "0.00"; 
    grdTimeSheet->Cells[5][1] = "0.00"; 
    grdTimeSheet->Cells[6][1] = "0.00"; 
 
    grdTimeSheet->RowHeights[1] = 18; 
 
    grdTimeSheet->Cells[0][2] = "0.00"; 
    grdTimeSheet->Cells[1][2] = "0.00"; 
    grdTimeSheet->Cells[2][2] = "0.00"; 
    grdTimeSheet->Cells[3][2] = "0.00"; 
    grdTimeSheet->Cells[4][2] = "0.00"; 
    grdTimeSheet->Cells[5][2] = "0.00"; 
    grdTimeSheet->Cells[6][2] = "0.00"; 
 
    grdTimeSheet->RowHeights[2] = 18; 
 
    grdEarnings->Cells[0][1] = "Regular"; 
    grdEarnings->Cells[0][2] = "Overtime"; 
    grdEarnings->Cells[1][0] = "Hours"; 
    grdEarnings->Cells[2][0] = "Amount"; 
} 



//--------------------------------------------------------------------------- 

6. Save All and Test the application: 

 
7. Close the form and return to Bcb 

 

StringGrid Methods 
To programmatically create a StringGrid control, declare a pointer to TStringGrid class using the new 
operator. Use its default constructor to specify the container of the control as parent. Here is an example: 
 
//--------------------------------------------------------------------------- 
#include <vcl.h> 
#include <Grids.hpp> 
#pragma hdrstop 
 
#include "Unit1.h" 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma resource "*.dfm" 
TForm1 *Form1; 
//--------------------------------------------------------------------------- 
__fastcall TForm1::TForm1(TComponent* Owner) 
    : TForm(Owner) 
{ 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    TStringGrid *StatRates = new TStringGrid(this); 
    StatRates->Parent = this; 
} 
//--------------------------------------------------------------------------- 
 
After creating the control, you can set its properties to the values of your choice. After using the control, 
you can get rid of it using the delete operator, or you can trust its parent to do it for you. 

 
If at any time a cell is selected, you can get the rectangular dimension of that cell using the CellRect() 
method. Its syntax is: 
 
TRect __fastcall CellRect(int ACol, int ARow); 

 



The arguments, ACol and ARow, represent the column index and the row index of the cell that has focus. 
This method returns the TRect rectangle of the cell. You can call this method when the user clicks a cell in 
the StringGrid control. Here is an example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    StringGrid1->ColWidths[0] = 72; 
    StringGrid1->ColWidths[1] = 54; 
    StringGrid1->ColWidths[2] = 35; 
    StringGrid1->ColWidths[3] = 75; 
 
    StringGrid1->RowHeights[0]= 15; 
    StringGrid1->RowHeights[1]= 22; 
    StringGrid1->RowHeights[2]= 10; 
    StringGrid1->RowHeights[3]= 35; 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1Click(TObject *Sender) 
{ 
    TRect Recto = StringGrid1->CellRect(StringGrid1->Col, StringGrid1->Row); 
    int Area = Recto.Width() * Recto.Height(); 
    Label1->Caption = Area; 
} 
//--------------------------------------------------------------------------- 
  
   

  
 
If the mouse is positioned or passing somewhere on or over the StringGrid control and you want to know 
on what cell the mouse is, you can use the MouseToCell() method. Its syntax is: 
 
void __fastcall MouseToCell(int X, int Y, int &ACol, int &ARow); 
 
This method is usually used on a Mouse event such as OnMouseDown(), OnMouseMove(), and 
OnMouseUp() as these events provide the mouse coordinates. The MouseToCell() method retrieves the 
horizontal and vertical coordinates of the mouse, translates that position to the column and row indexes of 
the cell under the mouse and return those values. Here is an example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1MouseMove(TObject *Sender, 
      TShiftState Shift, int X, int Y) 
{ 
    int x, y; 
 
    StringGrid1->MouseToCell(X, Y, x, y); 
    Label1->Caption = "Col: " + AnsiString(x) + " Row: " + AnsiString(y); 
} 



//--------------------------------------------------------------------------- 
 

  
  
 
In the same way, sometimes when the user clicks a cell, you may want to find out what cell was clicked. To 
get this information, you can call the GridCoord() method. Its syntax is: 
 
struct TGridCoord 
 
{ 
  int X; 
  int Y; 
}; 
 
TGridCoord __fastcall MouseCoord(int X, int Y); 

 
This method also is usually used in a mouse event. It takes as arguments the mouse position and returns a 
TPoint-like object, called TGridCoord. Here is an example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1MouseDown(TObject *Sender, 
      TMouseButton Button, TShiftState Shift, int X, int Y) 
{ 
    TGridCoord GC = StringGrid1->MouseCoord(X, Y); 
 
    Label1->Caption = "Col: " + AnsiString(GC.X) + " Row: " + AnsiString(GC.Y); 
} 
//--------------------------------------------------------------------------- 
 

StringGrid Events 
As a descendant of TWinControl, the TStringGrid class inherits all the usual events that are common to 
Windows control. It fires the OnClick event when the user clicks anywhere on the control. It sends an 
OnDblClick event when the user double-click any cell. It uses all mouse events (OnMouseDown, 
OnMouseMove, OnMouseUp, OnMouseWheelDown, and OnMouseWheelUp) as well as keyboard 
events (OnKeyDown, OnKeyPress, and OnKeyUp). Besides the regular control events, the StringGrid 
control fires events that are proper to its functionality. 

 
Just before the user selects the content of a cell, the control fires the OnSelectCell() event. Its syntax is: 
 
void __fastcall OnSelectCell(TObject *Sender, int ACol, int ARow, bool &CanSelect) 
 
The ACol and ARow arguments represent the cell that is about to be selected. The CanSelect argument 
allows you to specify whether the user is allowed to select the content of the cell. This event allows you to 



decide whether the cell can be selected or not. The following event is used to let the user know that a 
certain cell cannot be accessed: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1SelectCell(TObject *Sender, int ACol, 
      int ARow, bool &CanSelect) 
{ 
    if( ACol == 2 && ARow == 4 ) 
    { 
        ShowMessage("The content of this cell is not accessible.\n" 
                    "Please select another cell!"); 
        return; 
    } 
} 
//--------------------------------------------------------------------------- 
 

 
 

If the user has selected a cell and wants to edit its content, you can find out the content of such a cell using 
the OnGetEdtText() event. This even fires as soon as the user has selected text included in a cell but just 
before the user has had a chance to edit it. This means that you can determine whether the user is allowed 
to change the contents of a particular cell. When this even fires, it communicates the grid coordinates of the 
cell that was clicked, allowing you to retrieve the content of that cell  and do what you want. Here is an 
example: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1GetEditText(TObject *Sender, int ACol, 
      int ARow, AnsiString &Value) 
{ 
    AnsiString Content = StringGrid1->Cells[ACol][ARow]; 
    Label1->Caption = Content; 
} 
//--------------------------------------------------------------------------- 
 
On the other hand, when the user has changed the content of a cell, the StringGrid control fires an 
OnSetEditText() event. This is a good place to validate, accept, or reject the changes that the user has 
performed. This event also provides you with the grid coordinates of the cell whose contents the user has 
modified. 

 
To better control what type of text the user is allowed to enter in a cell, in all cells of a particular row, or in 
all cells of a particular column, you can use the OnGetEditMask() event. Its syntax is: 
 
void __fastcall OnGetEditMask(TObject *Sender, int ACol, int ARow, AnsiString &Value) 

 
The ACol and the ARow parameters represent the grid indexes of the cell. The Value is a string of the same 
type used for the EditMask property of the MaskEdit control. This event is used to set the EditMask 



needed for a particular cell. The following event restricts only US Social Security Numbers in all cells of 
the second column: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1GetEditMask(TObject *Sender, int ACol, 
      int ARow, AnsiString &Value) 
{ 
    if( StringGrid1->Col == 2 ) 
        Value = "000-00-0000"; 
} 
//---------------------------------------------------------------------------  
 

 
If you had allowed the user to move the columns, whenever a user has performed this operation, the 
StringGrid control would fire the OnColumnMoved() event. Its syntax is: 
 
void __fastcall TStringGrid(TObject* Sender, long FromIndex, long ToIndex); 

 
This event is a good place to decide what to do, if there is anything to do, when the user has moved a 
column. In the same way, if you had allowed the user to move rows, the StringGrid control sends an 
OnRowMoved() event immediately after the user has moved a row. 

 
If you had let the compiler know that you would set the appearance of cells yourself, which would have 
been communicated by setting the DefaultDrawing property to false, you can use the OnDrawCell() event 
to perform this customization. The syntax of this event is: 
 
void __fastcall StringGridDrawCell(TObject *Sender, int ACol, int ARow, 

              TRect &Rect, TGridDrawState State) 
 

The cell whose characteristics need to be set is Cell[ACol][ARow]. This means that you can locate any cell 
in the grid and set its properties as you like and as possible. For example, you can change the individual 
background color of a cell. The following code changes the background color of Cell[3][2] to blue: 
 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1DrawCell(TObject *Sender, int ACol, 
      int ARow, TRect &Rect, TGridDrawState State) 
{ 
    if( ACol == 3 && ARow == 2 ) 
    { 
        StringGrid1->Canvas->Brush->Color = clBlue; 
        StringGrid1->Canvas->FillRect(Rect); 
    } 
} 
//--------------------------------------------------------------------------- 
 
In the same way, you can change the text color of any cell of your choice independently of the other cells. 



 
The Rect parameter is the location and dimension of the cell whose characteristics you want to change. 

 
The State argument is a member of the TGridDrawState set which is defined as follows: 
 
enum Grids__3 { gdSelected, gdFocused, gdFixed }; 
typedef Set<Grids_3, gdSelected, gdFixed> TGridDrawState; 

 
This set allows you to examine the state of a particular cell. Because this value is a set, a particular cell can 
have more than one of these values. If a cell is selected, which by default gives it a background color 
different than the others, then its State contains the gdSelected value. If a cell has focus, which could mean 
that the user has just clicked it, sometimes to edit, the cell has the gdFocused value. Note that a cell can be 
selected and have focus, which means it would have both gdSelected and gdFocused. If a cell is a fixed 
cell as we described previously, then the cell has the gdFixed value. 
 
Here is an example of using the OnDrawCell() event to customize the appearance of a StringGrid object: 
 
//--------------------------------------------------------------------------- 
#include <vcl.h> 
#pragma hdrstop 
 
#include "Unit1.h" 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma resource "*.dfm" 
TForm1 *Form1; 
//--------------------------------------------------------------------------- 
__fastcall TForm1::TForm1(TComponent* Owner) 
    : TForm(Owner) 
{ 
    StringGrid1->DefaultDrawing = False; 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::StringGrid1DrawCell(TObject *Sender, int ACol, 
      int ARow, TRect &Rect, TGridDrawState State) 
{ 
    if( State.Contains(gdFixed) ) 
    { 
        StringGrid1->Canvas->Brush->Color = static_cast<TColor>(RGB(255, 155, 0)); 
        StringGrid1->Canvas->Font->Style = TFontStyles() << fsBold; 
        StringGrid1->Canvas->Font->Color = static_cast<TColor>(RGB(250, 245, 135)); 
 
        StringGrid1->Canvas->Rectangle(Rect); 
    } 
    else if( State.Contains(gdSelected) ) 
    { 
        StringGrid1->Canvas->Brush->Color = static_cast<TColor>(RGB(255, 205, 155)); 
        StringGrid1->Canvas->Font->Style = TFontStyles() >> fsBold; 
        StringGrid1->Canvas->Font->Color = clNavy; 
        StringGrid1->Canvas->FillRect(Rect); 
    } 
    else 
    { 
        StringGrid1->Canvas->Brush->Color = clWhite; 
        StringGrid1->Canvas->Font->Color  = clBlue; 
        StringGrid1->Canvas->FillRect(Rect); 
    } 
                                     



    StringGrid1->ColWidths[0] = 15; 
    StringGrid1->ColWidths[1] = 75; 
    StringGrid1->ColWidths[2] = 75; 
    StringGrid1->ColWidths[3] = 90; 
    StringGrid1->ColWidths[4] = 120; 
 
    StringGrid1->RowHeights[0] = 16; 
    StringGrid1->RowHeights[1] = 16; 
    StringGrid1->RowHeights[2] = 16; 
    StringGrid1->RowHeights[3] = 16;  
    StringGrid1->RowHeights[4] = 16; 
 
    AnsiString text = StringGrid1->Cells[ACol][ARow]; 
    StringGrid1->Canvas->TextRect(Rect, Rect.Left, Rect.Top, text); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
    StringGrid1->Cells[0][1] = "1"; 
    StringGrid1->Cells[0][2] = "2"; 
    StringGrid1->Cells[0][3] = "3"; 
    StringGrid1->Cells[0][4] = "4"; 
 
    StringGrid1->Cells[1][0] = "First Name"; 
    StringGrid1->Cells[2][0] = "Last Name"; 
    StringGrid1->Cells[3][0] = "Phone Number"; 
    StringGrid1->Cells[4][0] = "Email Address"; 
 
    StringGrid1->Cells[1][1] = "Alex"; 
    StringGrid1->Cells[2][1] = "Walters"; 
    StringGrid1->Cells[3][1] = "(202) 133-7402"; 
    StringGrid1->Cells[4][1] = "waltersa88@yahoo.com";   
    StringGrid1->Cells[1][2] = "Bertrand"; 
    StringGrid1->Cells[2][2] = "Kumar"; 
    StringGrid1->Cells[4][2] = "kumarb@mailman.com"; 
    StringGrid1->Cells[3][3] = "Hermine"; 
} 
//--------------------------------------------------------------------------- 
  

 
 

 Practical Learning: Using String Grid Events 
1. In the private section of the form, declare two variables and a method as follows: 

private: 
    double HoursWeek1, HoursWeek2; 
    double __fastcall EvaluateTime(AnsiString StrTime); // User declarations 



2. In the top section of the source file of the form, include the StrUtils header file: 

//--------------------------------------------------------------------------- 
#include <vcl.h> 
#include <DateUtils.hpp> 
#include <StrUtils.hpp> 
#pragma hdrstop 
 
#include "Main.h" 
//--------------------------------------------------------------------------- 

3. Implement the above method as follows: 

//--------------------------------------------------------------------------- 
double __fastcall TfrmMain::EvaluateTime(AnsiString StrTime) 
{ 
    //TODO: Add your source code here 
    double dValue; 
    AnsiString StrValue = AnsiReplaceStr(StrTime, " ", ""); 
 
    if( StrValue.IsEmpty() ) 
        return 0.00; 
    else 
        return StrToFloat(StrValue); 
} 
//--------------------------------------------------------------------------- 

4. To use of the StringGrid events, on the form, click the top StringGrid control 

5. In the Object Inspector, click the Events tab and double-click the event side of 
OnSetEditText 

6. Implement it as follows: 

//--------------------------------------------------------------------------- 
void __fastcall TfrmMain::grdTimeSheetSetEditText(TObject *Sender, int ACol, 
      int ARow, const AnsiString Value) 
{ 
    double Monday1    = EvaluateTime(grdTimeSheet->Cells[0][1]); 
    double Tuesday1   = EvaluateTime(grdTimeSheet->Cells[1][1]); 
    double Wednesday1 = EvaluateTime(grdTimeSheet->Cells[2][1]); 
    double Thursday1  = EvaluateTime(grdTimeSheet->Cells[3][1]); 
    double Friday1    = EvaluateTime(grdTimeSheet->Cells[4][1]); 
    double Saturday1  = EvaluateTime(grdTimeSheet->Cells[5][1]); 
    double Sunday1    = EvaluateTime(grdTimeSheet->Cells[6][1]); 
 
    HoursWeek1 = Monday1 + Tuesday1 + Wednesday1 + 
                 Thursday1 + Friday1 + Saturday1 + Sunday1; 
 
    double Monday2    = EvaluateTime(grdTimeSheet->Cells[0][2]); 
    double Tuesday2   = EvaluateTime(grdTimeSheet->Cells[1][2]); 
    double Wednesday2 = EvaluateTime(grdTimeSheet->Cells[2][2]); 
    double Thursday2  = EvaluateTime(grdTimeSheet->Cells[3][2]); 
    double Friday2    = EvaluateTime(grdTimeSheet->Cells[4][2]); 
    double Saturday2  = EvaluateTime(grdTimeSheet->Cells[5][2]); 
    double Sunday2    = EvaluateTime(grdTimeSheet->Cells[6][2]); 
 
    HoursWeek2 = Monday2 + Tuesday2 + Wednesday2 + 
                 Thursday2 + Friday2 + Saturday2 + Sunday2;     
} 
//--------------------------------------------------------------------------- 



7. On the form, double-click the Process It button and implement its OnClick event as 
follows: 

//--------------------------------------------------------------------------- 
void __fastcall TfrmMain::btnProcessItClick(TObject *Sender) 
{ 
    double RegHours1, RegHours2, OvtHours1, OvtHours2; 
    double RegAmount1, RegAmount2, OvtAmount1, OvtAmount2; 
    double RegularHours, OvertimeHours; 
    double RegularAmount, OvertimeAmount, TotalEarnings; 
 
    double HourlySalary = StrToFloat(edtHourlySalary->Text); 
    double OvtSalary    = HourlySalary * 1.5; 
 
    if( HoursWeek1 < 40 ) 
    { 
        RegHours1  = HoursWeek1; 
        RegAmount1 = HourlySalary * RegHours1; 
        OvtHours1  = 0.00; 
        OvtAmount1 = 0.00; 
    } 
    else if( HoursWeek1 >= 40 ) 
    { 
        RegHours1  = 40; 
        RegAmount1 = HourlySalary * 40; 
        OvtHours1  = HoursWeek1 - 40; 
        OvtAmount1 = OvtHours1 * OvtSalary; 
    } 
 
    if( HoursWeek2 < 40 ) 
    { 
        RegHours2  = HoursWeek2; 
        RegAmount2 = HourlySalary * RegHours2; 
        OvtHours2  = 0.00; 
        OvtAmount2 = 0.00; 
    } 
    else if( HoursWeek2 >= 40 ) 
    { 
        RegHours2  = 40; 
        RegAmount2 = HourlySalary * 40; 
        OvtHours2  = HoursWeek2 - 40; 
        OvtAmount2 = OvtHours2 * OvtSalary; 
    } 
 
    RegularHours   = RegHours1  + RegHours2; 
    OvertimeHours  = OvtHours1  + OvtHours2; 
    RegularAmount  = RegAmount1 + RegAmount2; 
    OvertimeAmount = OvtAmount1 + OvtAmount2; 
    TotalEarnings  = RegularAmount + OvertimeAmount; 
 
    grdEarnings->Cells[1][1] = FloatToStrF(RegularHours, ffFixed, 6, 2); 
    grdEarnings->Cells[1][2] = FloatToStrF(OvertimeHours, ffFixed, 6, 2); 
    grdEarnings->Cells[2][1] = FloatToStrF(RegularAmount, ffFixed, 6, 2); 
    grdEarnings->Cells[2][2] = FloatToStrF(OvertimeAmount, ffFixed, 6, 2); 
    edtTotalEarnings->Text   = FloatToStrF(TotalEarnings, ffFixed, 6, 2); 
} 
//--------------------------------------------------------------------------- 

8. Save All and test the application. Here is an example: 



 
 

9. Close the form and return to Bcb  

 


